
FREE LOSSLESS IMAGE FORMAT
Jon Sneyers 
jon@cloudinary.com

Cloudinary

Pieter Wuille 
pieter.wuille@gmail.com

Blockstream

and

ICIP 2016, September 26th

DON’T WE HAVE ENOUGH
IMAGE FORMATS ALREADY?

• JPEG, PNG, GIF, WebP, JPEG 2000, JPEG XR, JPEG-LS, JBIG(2),
APNG, MNG, BPG, TIFF, BMP, TGA, PCX, PBM/PGM/PPM, PAM, …

• Obligatory XKCD comic:

YES, BUT…

• There are many kinds of images: 
photographs, medical images, diagrams, plots, maps,
line art, paintings, comics, logos, game graphics,
textures, rendered scenes, scanned documents,
screenshots, …

EVERYTHING SUCKS AT SOMETHING

• None of the existing formats works well on all kinds of images.

• JPEG / JP2 / JXR is great for photographs, but…

• PNG / GIF is great for line art, but…

• WebP: basically two totally different formats

• Lossy WebP: somewhat better than (moz)JPEG

• Lossless WebP: somewhat better than PNG

• They are both .webp, but you still have to pick the format

GOAL: ONE FORMAT
THAT COMPRESSES ALL IMAGES WELL

EXPERIMENTAL RESULTS
Corpus Lossless formats JPEG*

(bit depth) FLIF FLIF* WebP BPG PNG PNG* JP2* JXR JLS 100% 90%

N
at

ur
al

(p
ho

to
) [4] 8 1.002 1.000 1.234 1.318 1.480 2.108 1.253 1.676 1.242 1.054 0.302

[4] 16 1.017 1.000 / / 1.414 1.502 1.012 2.011 1.111 / /
[5] 8 1.032 1.000 1.099 1.163 1.429 1.664 1.097 1.248 1.500 1.017 0.302

[6] 8 1.003 1.000 1.040 1.081 1.282 1.441 1.074 1.168 1.225 0.980 0.263

[7] 8 1.032 1.000 1.098 1.178 1.388 1.680 1.117 1.267 1.305 1.023 0.275

[8] 8 1.001 1.000 1.059 1.159 1.139 1.368 1.078 1.294 1.064 1.152 0.382

[8] 12 1.009 1.000 / 1.854 2.053 2.378 2.895 5.023 2.954 / /

A
rti

fic
ia

l

[9] 8 1.039 1.000 1.212 1.145 1.403 1.609 1.436 1.803 1.220 1.193 0.233

[10] 8 1.000 1.095 1.371 1.649 1.880 2.478 4.191 7.619 3.572 5.058 2.322

[11] 8 1.000 1.037 1.982 4.408 2.619 2.972 10.31 33.28 33.12 14.87 9.170

[12] 8 1.106 1.184 1.000 2.184 1.298 1.674 3.144 3.886 2.995 3.186 1.155

[13] 8 1.000 1.049 1.676 1.734 2.203 2.769 4.578 10.35 4.371 5.787 2.987

* : Format supports progressive decoding (interlacing).
/ : Unsupported bit depth.
Numbers are scaled so the best (smallest) lossless format corresponds to 1.

Fig. 4. Compressed corpus sizes using various image formats.

output the value, and a cost estimate (number of bits for the
compressed output) is updated. For each of the properties,
each leaf node maintains a running average of the property
values encountered at that leaf; one virtual context is used
for values below the average, the other is used for higher-
than-average values. For each property we select the virtual
context accordingly, and update its chances and cost estimate.

These cost estimates indicate which properties are most
significant. If a property is irrelevant, then the sum of the
costs for its two virtual contexts will be the same or higher
than that of the actual context. If however a property is rele-
vant, then using two different contexts depending on the value
for that property will result in better compression. We com-
pare the cost of the “best” pair of virtual contexts in a given
leaf node with the cost of the actual context. If the cost dif-
ference gets larger than some fixed threshold, the leaf node
becomes a decision node testing the “best” property. Figure 3
illustrates this. The MANIAC tree that we end up with is not
necessarily optimal; future encoders can use other algorithms
since the structure of the tree is part of the encoded bitstream.

MANIAC trees have three main advantages compared to
using a fixed context array: 1) There is no need to used quan-
tized property values, so we can distinguish near-identical
property values; 2) Properties are only actually used if they
contribute to better compression for the specific image; 3) The
context tree scales with the image: for large, complex images,
more contexts will be used than for small, simple images.

5. EXPERIMENTAL EVALUATION

We have evaluated (the reference encoder of) FLIF by com-
paring its compression density to that of other lossless image
compression algorithms (PNG [14], JPEG 2000 [1], JPEG
XR [15], JPEG-LS [16], WebP [17], BPG [18]) and to lossy
JPEG [19] at maximum quality6 and at 90% quality. To opti-
mize non-interlaced PNG files, we used ZopfliPNG [20]; for

6Even at 100% quality, JPEG is lossy since its YCbCr transform reduces
the number of possible colors from 224 = 16 777 216 to only ⇠ 4 million.

interlaced PNGs, we used OptiPNG [21]. For BPG we used
the options -m 9 -e jctvc; for WebP we used -m 6 -q

100. For the other formats we used default lossless options.
Figure 4 shows the results; see [22] for more details. On

one corpus (geographic maps), WebP was the best format. On
the other corpuses, FLIF won (sometimes very clearly).

In terms of encoding/decoding speed, (our implementa-
tion of) FLIF is somewhat slower than the other formats. This
is explained in part by the inherent computational complexity
of the algorithm, and in part by our implementation lacking
low-level (hardware-specific) optimization. It is however fast
enough for most practical applications.

The reference FLIF encoder [23, 24] is released under the
terms of the GNU LGPL version 3 or later; the reference de-
coder is available under the Apache 2.0 license.

6. FLIF AND RESPONSIVE IMAGES

Lossy image compression is useful when storage or band-
width are limited. Arguably, storage is becoming relatively
ubiquitous, while bandwidth conditions have become increas-
ingly variable (both in speed and price).

Responsive Web Design (RWD) aims to deal with various
viewing devices and bandwidth conditions. The typical ap-
proach to responsive images is a mostly server-side solution
where for each image, multiple files are created at various res-
olutions and quality settings.

We propose an alternative client-side approach, based on
a single FLIF file per image. Progressive decoding (i.e. par-
tial downloading) allows fine-grained control over the desired
trade-off between image quality and transfer time and cost.
This trade-off depends on the receiver and their intention: a
quick preview, a closer look, a high-quality print, or further
image processing without cumulative degradation.

7. CONCLUSION AND FUTURE WORK

FLIF is good at losslessly compressing various kinds of im-
ages, not just photographs. Based on Adam1 interlacing and
YCoCg interleaving, its advanced progressive decoding re-
duces the need for lossy compression. We hope that FLIF can
be a step in the direction of a ‘universal’ image format.

MANIAC can be generalized to general-purpose com-
pression. The underlying idea is to use machine learning to
determine the most relevant features to construct the context
model. Many machine learning techniques could be used; we
have used relatively simple decision trees, but any kind of
classifier could be used. Learning does not necessarily have
to be fast — encoding time is usually much less important
than decoding time. The only requirement is that the learned
object (e.g. the decision tree) can be stored concisely and that
it can be reconstructed quickly during decoding.

😀

😱

HOW DOES IT WORK?
• General outline: pretty traditional

• Color transform

• Spatial domain (no DCT/DWT transform)

• Interlacing

• Prediction

• Entropy coding: MANIAC

COLOR TRANSFORM
• RGBA channel compaction to reduce effective bit depth if only a subset of the 2^8 or

2^16 possible values effectively occur in the image

• (compacted) RGBA to YCoCgA

• Purple = (R+B)/2, Y = (P+G)/2, Co = R-B, Cg = G-P 
Note: one extra bit for Co/Cg (signed values)

• YCoCg is lossless and optional, can also use (permuted / green-subtracted) RGB

• If very sparse colors: palette (just like PNG/GIF), arbitrary palette size

• If relatively sparse colors: color buckets, a generalization of palette with ‘discrete’
and ‘continuous’ buckets to reduce the range of Y/Co/Cg given the value of nothing/Y/Y+Co

INTERVAL COLOR RANGES
• Channel order: A, Y, Co, Cg

• To encode any color value, first compute the interval
of ‘valid’ values based on known constraints

• E.g. if Y=0, then we know that -3 ≤ Co ≤ 3

• Intervals are derived from YCoCg definition, color
buckets, explicitly stored bounds

INTERLACING: ADAM∞
1 2

3 3

INTERLACING: ADAM∞
1 4 2 4

3 4 3 4

INTERLACING: ADAM∞
1 4 2 4

5 5 5 5

3 4 3 4

INTERLACING: ADAM∞
1 6 4 6 2 6 4

5 6 5 6 5 6 5

3 6 4 6 3 6 4

INTERLACING: ADAM∞
1 6 4 6 2 6 4

7 7 7 7 7 7 7

5 6 5 6 5 6 5

7 7 7 7 7 7 7

3 6 4 6 3 6 4

INTERLACING: ADAM∞
1 8 6 8 4 8 6 8 2 8 6 8 4 8

7 8 7 8 7 8 7 8 7 8 7 8 7 8

5 8 6 8 5 8 6 8 5 8 6 8 5 8

7 8 7 8 7 8 7 8 7 8 7 8 7 8

3 8 6 8 4 8 6 8 3 8 6 8 4 8

INTERLACING: ADAM∞
1 8 6 8 4 8 6 8 2 8 6 8 4 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9
7 8 7 8 7 8 7 8 7 8 7 8 7 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9
5 8 6 8 5 8 6 8 5 8 6 8 5 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9
7 8 7 8 7 8 7 8 7 8 7 8 7 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9
3 8 6 8 4 8 6 8 3 8 6 8 4 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9

ADAM7 VS ADAM∞
 or rather: plain RGB vs prioritized YCoCg

PREDICTION

• Key difference with Adam7-PNG: interlacing is
taken into account in the prediction/filtering

PNG (ADAM7) PREDICTION
1 8 6 8 4 8 6 8 2 8 6 8 4 8

7 8 7 8 7 8 7 8 7 8 7 8 7 8

5 8 6 8 5 8 6 ? 5 6 5

7 7 7 7 7 7 7

3 6 4 6 3 6 4

FLIF PREDICTION
1 8 6 8 4 8 6 8 2 8 6 8 4 8

7 8 7 8 7 8 7 8 7 8 7 8 7 8

5 8 6 8 5 8 6 ? 5 6 5

7 7 7 7 7 7 7

3 6 4 6 3 6 4

MANIAC ENTROPY CODING
The main “new thing” in FLIF

Meta-Adaptive Near-zero Integer Arithmetic Coding

MANIAC ENTROPY CODING

• Meta-Adaptive Near-zero Integer Arithmetic Coding

• Base idea: CABAC (context-adaptive binary AC)

• Contexts are not static (i.e. one big fixed array) but dynamic (a
tree which grows branches during encode/decode)

• The tree structure is learned at encode time, encoded in the bitstream

• Context model itself is specific to the image, not fixed by the format 
(so it is meta-adaptive)

CONTEXT MODEL

• Problem: how many contexts?

• Too few: cannot really capture the actual ‘context’ 
(contexts that behave differently get lumped together)

• Too many: too few symbols per context 
(similar contexts get updated separately)

CABAC
• Example context model: FFV1, “large model”

• up to 5 properties: (TT-T), (LL-L), (L-TL), (TL-T), (T-TR)

• Properties are quantized, and used to determine the AC context

• Context are organized in an array (i.e. context[11][11][5][5][5])

• Fixed number of contexts

• 666 in the “small model”

• 7563 in the “large model”

MANIAC
• Example context model: FLIF

• up to 11 properties: e.g. (TT-T), (LL-L), (L-(TL+BL)/2), (T-(TL+TR)/2),
(B-(BL+BR)/2), (T-B), the predictor : e.g. median((T+B)/2, T+L-TL, L+B-
BL), the median-index, the value of A, the value of Y, the “luma
prediction miss”: (Y - (YT+YB)/2)

• Properties are not quantized, and used to determine the AC context

• Contexts are organized in a dynamic structure (“MANIAC tree”)

• No fixed number of contexts

MANIAC TREE

MANIAC TREE
4.1. Context-Adaptive Binary Arithmetic Coding

In CABAC, the probability model is adaptive. Initially we
start with an arbitrary chance (e.g. 50%) for each bit. After
processing a bit, the chance is updated. The aim is to learn the
actual distribution from the observed past to hopefully better
predict the future. If we have additional context information,
we can use a different probability in each context. Correla-
tion between the context and the bits leads to more accurate
probabilities and better compression. Obviously all context
information has to be available at decode time.

To encode integers in a near-zero interval, an exponent-
mantissa representation is used, with a different context for
each bit position. Our binarization is based on that of FFV1,
with some improvements. First we output a single bit to in-
dicate if x = 0. Then we output the sign of x, followed by
the exponent, i.e. the number of bits e = dlog(|x|)e needed to
represent |x|. The number e is encoded in unary notation as
e 1 bits followed by one 0 bit. We use different contexts for
each of these exponent bits. Finally we output the mantissa
bits; the leading 1 is omitted. Redundant bits are omitted.5

4.2. Context Model

In FFV1, quantized pixel differences are used as context in-
formation. Referring to Figure 1, the differences L � TL,
TL� T , T � TR, LL�L, TT � T are computed and quan-
tized (using a logarithmic scale). For every combination of
these 5 properties, a different context is defined. In total, 7563
different contexts (per color channel) can be used.

In FLIF, the contexts depend on the image traversal order.
Scanline traversal: we use the same 5 differences as in FFV1
(but without quantization), and we also use the following ex-
tra properties: the prediction itself (the median of 3 values); a
number indicating which of those 3 values was used; and the
pixel value(s) in the 0, 1, 2 or 3 previously encoded channels.
Interlaced traversal: the above 7 to 10 properties are also
used, except that instead of L � TL and TL � T , we use
L � (TL + BL)/2 and T � (TL + TR)/2, and instead of
T �TR we use either B� (BL+BR)/2 (horizontal step) or
R�(TR+BR)/2) (vertical step). Additionally, the following
properties are used: the difference between the two adjacent
pixels from the previous interlacing step (T �B in horizontal
steps, L � R in vertical steps), and for the chroma channels:
the difference between the actual luma pixel value and the one
predicted by the ‘average’ predictor.

5In general, suppose the value x to be encoded is in the interval [a, b]. If
the interval does not contain zero, the zero-bit is omitted. If the signs of a
and b are the same, the sign-bit is omitted. There can be a lower bound on
the exponent, e.g. if x 2 [32, 80] then we know e � 5 so the first 5 exponent
bits can be omitted. If the exponent has the largest possible value (e.g. 6 if
x 2 [32, 80]), then it does not need to be followed by a 0 bit. Finally, in
the mantissa, some bits may be implied, e.g. if x 2 [32, 80] and e = 6 (so
x 2 [64, 80]), then the most significant bit of the mantissa (the one for 32)
cannot be 1 since that would give a lower bound x � 92.

Fig. 2. MANIAC tree structure.

Fig. 3. Growing a MANIAC tree: one step.

4.3. MANIAC Tree Learning

When using static contexts like in FFV1, where the number
of contexts is the product of domain sizes of each property,
quantization has to be used in order to reduce the number of
contexts. It is hard to get the number of contexts “just right”:
using too many contexts hurts compression because context
adaptation is limited (few pixels per context); but with too
few contexts, compression also suffers since pixels with dif-
ferent properties end up in the same context. Also, when the
contexts are defined statically, a lot of the contexts are actu-
ally not used at all since the corresponding combination of
properties simply does not occur in the source image.

By contrast, we propose a dynamic data structure as a con-
text model. It is essentially a decision tree (actually one tree
per channel), grown during encoding. Figure 2 shows an ex-
ample MANIAC tree. Every internal (non-leaf) node has a
test condition: an inequality comparing one of the context
properties to a value. The child nodes correspond to the two
test branches. During encoding, every leaf node contains one
actual context (array of chances) and two virtual contexts per
property. At decode time only the actual contexts are used.

For each encoded value, the decision tree is traversed until
a leaf node is reached. Initially, the actual context is used to

used for learning
(encoder only)

KEY INSIGHT

• Compression = Machine Learning

• If you can (probabilistically) predict/classify, 
then you can compress

• Every ML technique is a potential entropy coder

• MANIAC: decision trees

ENTROPY CODING
Huffman LZW DEFLATE  

(LZ + Huffman)
AC 

(pre-CABAC) CABAC MANIAC

Used in JPEG GIF PNG, 
lossless WebP

JPEG-AC,
JPEG 2000, 
VP8 (WebP)

H.264, FFV1,
HEVC (BPG),

VP9
FLIF

Global adaptive 
(initial chances can be tuned) ✅ ❌ ✅ ✅ ✅ ✅

Local adaptive 
(chances can be updated) ❌ ✅ ✅ ✅ ✅ ✅

Context-adaptive 
(chances per context) ❌ ❌ ❌ ❌ ✅ ✅

Meta-adaptive 
(context model can be tuned)

❌ ❌ ❌ 
(lossless WebP:

somewhat)

❌ ❌ ✅

FLIF FEATURES
• Up to 16-bit RGBA, lossless (like PNG)  

A=0 pixels can have undefined RGB values (values not encoded), this is optional

• Interlaced (default) or non-interlaced

• Animation (with some inter-frame features: FrameShape, Lookback)

• Can store metadata (ICC color profile, Exif/XMP metadata)

• Rudimentary support for camera raw RGGB

• Poly-FLIF: javascript polyfill decoder

APNG: 962KB

FLIF: 526KB Fully decoded 
APNG or FLIF

GIF: 436KB 
(256 colors, no full alpha)

50KB 150KB 250KB

LOSSY FLIF?
• Encoder can optionally modify the input pixels in such a

way that the image compresses better

• This works surprisingly well!

• Other lossless formats (PNG, lossless WebP) can also be used
in a lossy way, but they typically don’t even get anywhere near
the lossy formats

• Plus: there’s room for future improvement

 MOZJPEG VS PNG8
262,800 BYTES 264,653 BYTES
DSSIM: 0.00134261 DSSIM: 0.00639207  
PSNR: 33.5447 PSNR: 31.9077

 MOZJPEG VS FLIF
262,800 BYTES 248,225 BYTES
DSSIM: 0.00134261 DSSIM: 0.00106984  
PSNR: 33.5447 PSNR: 37.2284

DO WE STILL NEED LOSSY?
• Maybe we don’t need (inherently) lossy formats anymore?

• Lossy is still useful, but maybe lossy encoding to lossless target formats is good enough?

FUTURE DIRECTIONS
• Apply MANIAC to other formats / general-purpose

compression

• Try MANIAC-style entropy coding based on other
ML techniques (Neural nets, SVM, etc etc)

• Improve (decoding) performance

• Improve (lossless/lossy) compression

QUESTIONS?
• Reference implementation of FLIF: 

https://github.com/FLIF-hub/FLIF

• FLIF home page: http://flif.info/

• Decoder license: Apache 2.0 Encoder license: LGPLv3

jon@cloudinary.com

https://github.com/FLIF-hub/FLIF
http://flif.info/

